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Abstract

Entropy production in incompressible turbulent shear flows of Newtonian fluids is analysed systematically and

incorporated into a CFD code. There are four different mechanisms of entropy production: dissipation in a mean and

fluctuating velocity field and heat flux in a mean and fluctuating temperature field. Based on asymptotic considerations

wall functions for the four production terms are developed. These wall functions are mandatory when high-Reynolds

number turbulent models are used since peak values of entropy production occur in the immediate vicinity of a wall. As

an example pipe flow with heat transfer is analysed and compared to results from a direct numerical simulation with

special emphasis on the entropy production in the near wall region.
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1. Introduction

Numerical prediction of heat transport phenomena

in turbulent shear flows has attracted considerable

attention over the past few decades. Modelling of these

flows has come to a stage where pressure drop and

heat transfer results are accurate even in complex

geometries. Thus, computational fluid dynamics (CFD)

has become state of the art in thermal engineering like

in heat-exchanger design. However, all these CFD

models only take into account the first law of ther-

modynamics.

An efficient use of energy is one of the major

objectives in designing modern thermal systems like

compact heat exchangers and power plants. This,

however, can only be achieved if also the second law
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of thermodynamics is accounted for, since the amount

of available work (also called exergy) is linked to the

amount of entropy production, see [1]. Therefore, a

thermal apparatus producing less entropy by irrever-

sibilities destructs less available work (producing less

anergy). This increases the total efficiency of a thermal

system. The amount of entropy produced can be used

directly as an efficiency parameter of the system, see

[2–4].

Second law and entropy production analysis in

particular have been widely used to evaluate the

sources of irreversibilities in components and systems.

The majority of these studies, however, are limited to a

global analysis. The evaluation of local sources of ir-

reversibilities, i.e. local entropy production, are often

based on empirical correlations for the velocity and

temperature fields. They, however, are known only for

a small range of boundary conditions, see [5–8]. Other

studies about local entropy production rates are for

laminar problems only, see [9–15] or do not include

the influence of solid walls in turbulent problems, see

[16].
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Nomenclature

cp specific heat capacity, (J/(kgK))

Ecs turbulent Eckert number Ecs ¼ u2s=ðcpTsÞ, (–)
k turbulent kinetic energy, (m2/s2)

kH variance of temperature fluctuations

kH ¼ T 02=2, (K2)

~q heat flux density vector, (W/m2)

Pr Prandtl number Pr ¼ cp � l=k, (–)
Prt turbulent Prandtl number, (–)

Re Reynolds number Re ¼ um � D=m, (–)
s entropy per unit mass, (J/(kgK))
_SPRO;D entropy production rate by viscous dissipa-

tion, (W/(m3 K))
_SPRO;D0 entropy production rate by turbulent dissi-

pation, (W/(m3 K))
_SPRO;C entropy production rate by heat transfer

with mean temperature gradients, (W/

(m3 K))
_SPRO;C0 entropy production rate by heat transfer

with gradients of the fluctuating tempera-

ture, (W/(m3 K))

t time, (s)

T temperature, (K)

Ts friction temperature Ts ¼ �qw=ð.cpusÞ, (K)

TU turbulent dissipation rate, (W/m3)

u velocity in x-direction, (m/s)

us skin friction velocity, us ¼
ffiffiffiffiffiffiffiffiffiffi
sw=.

p
, (m/s)

v velocity in y-direction, (m/s)

w velocity in z-direction, (m/s)

x coordinate in x-direction, (m)

y coordinate in y-direction, (m)

z coordinate in z-direction, (m)

Greek symbols

a thermal diffusivity, (m2/s)

e dissipation rate of turbulent kinetic energy,

(W/kg)

eH dissipation of the variance of temperature

fluctuations, (K2/s)

U viscous dissipation of mechanical energy,

(W/m3)

UH entropy production term, (WK/m3)

j von Karman’s constant K ¼ 0:42, (–)
jH universal constant in the temperature field,

jH ¼ j=Prt, (–)
k thermal conductivity, (W/(mK))

l molecular viscosity, (kg/(m s))

m kinematic viscosity, m ¼ l=., (m2/s)

mT turbulent eddy viscosity, (m2/s)

. density, (kg/m3)

s shear stress, (kg/(m s2))

Hþ dimensionsless temperature, Hþ ¼ ðT �
TwÞ=Ts, (–)

Subscripts

( )ln value in the logarithmic region

( )mp value at the midpoint

( )w value at the wall

Superscripts

( )þ normalized by wall variables

ð�Þ time mean component

( )0 fluctuating component
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Unfortunately, when designing a thermal apparatus

important information inherent in the solution of the

turbulent momentum and energy equations is never

looked at nor used by the designers. However, it could

be used to calculate the amount of entropy production

and help the CFD engineer to improve the performance

of his apparatus.

In this paper we present model equations for the

calculation of the local entropy production in turbulent

shear flows by extending the Reynolds-averaging proce-

dure to the entropy equation. This equation serves

to identify the entropy production sources, without need

to solve the equation itself. In the basic equations

including high-Reynolds number k–e turbulence closure

special attention has been given to the near wall regions

where entropy production undergoes a steep change.

Here, general wall functions for entropy production

based on asymptotic considerations have been devel-

oped.
Adopting the presented model equations, local en-

tropy production can be calculated in the post-process-

ing phase of a CFD analysis. No further differential- or

transport equation needs to be solved. Thus, the pre-

sented procedure does not require much CPU time and

can easily be implemented in existing CFD codes. It is a

tool to evaluate the performance of an apparatus in

thermal engineering.
2. Transport equation for entropy

For a systematic derivation of a model for entropy

production in turbulent flows, we start with the trans-

port equation for entropy (Cartesian coordinates,

incompressible fluid, single-phase flow, Fourier heat

conduction), see [17]:

ð1Þ
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with the dissipation function U and UH given in detail

later (Eqs. (3) and (4)).

In Eq. (1) the two terms related to entropy produc-

tion are marked by grey shaded boxes. The first one

describes entropy production by viscous dissipation, the

second one entropy production by heat transfer with

finite temperature gradients. These terms are always

positive and therefore act as a real source in Eq. (1).

All other terms can be positive or negative depending on

the direction of the flow and heat flux.

For example, a heat transfer apparatus with large

areas of heat transfer encounters small temperature

gradients and therefore small entropy production by heat

transfer. However, due to the large area the pressure

drop of this apparatus will be quite high, resulting in a

large entropy production by dissipation. Since now both

effects, heat transfer and pressure drop, have been linked

to one single quantity (entropy production), the overall

performance can be evaluated by the total entropy pro-

duction, which should be as small as possible.

If we had not this single quantity, two completely

different parameters would have to be brought together

in order to find out if, for example, an increase of the

heat transfer coefficient accompanied by an increase in

pressure drop is an increase in the overall performance

of the apparatus. This, however, would be like com-

paring apples and pears.

2.1. Time-averaging the transport equation for entropy

Eq. (1) is valid for the instantaneous values

of entropy s, velocities u, v and w and temperature T . In
the well known RANS (Reynolds averaged Navier

Stokes) approach instantaneous values are split into

time-mean and fluctuating parts, i.e. s ¼ �sþ s0,
u ¼ �uþ u0; . . . :

These are inserted into Eq. (1) before it is time-

averaged. In this time-averaging process additional tur-

bulent terms emerge as will be shown in the following

subsections.
2.1.1. Convective terms

On the left hand side of Eq. (1) after time-averaging

for an incompressible fluid three additional terms ap-

pear:
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2.1.2. Entropy production by dissipation

Time-averaging the entropy production by dissipa-

tion gives two groups of terms, one with mean and one

with fluctuating quantities. They read:
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Here T 0 in the denominator appears only in higher

order terms when expanded into a series and therefore is

neglected.

The first group of terms containing the mean veloc-

ity gradients can be interpreted as entropy produc-

tion by dissipation in the mean flow field. This part of

the dissipation is often referred to as direct dissipation.

The second group of terms, containing the gradients

of the fluctuating velocities hence is the entropy pro-

duction by dissipation in the fluctuating part of the

flow field. It is often called indirect or turbulent dissipa-

tion.
2.1.3. Entropy production by heat transfer

In the time-averaging process of the entropy pro-

duction terms with respect to finite temperature gradi-

ents in Eq. (1) a factor 1=T 2 appears. Again T 0 is

neglected since it only appears in higher order terms.

Entropy production due to finite temperature gradients

then reads:

UH
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ð4Þ
Here, the first group of terms is the entropy pro-

duction due to heat transfer with time-mean tempera-

ture gradients. The second group of terms is the entropy

production by heat transfer due to fluctuating temper-

ature gradients.
2.1.4. Time-averaged transport-equation for entropy

Summarising the time-averaging process of the

transport Eq. (1) gives the following turbulent transport

equation for the mean entropy:
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ð5Þ
Thus four groups of entropy production terms in tur-

bulent flows can be identified in this systematic ap-

proach:

(1) _SPRO;D: entropy production rate by direct dissipation,

(2) _SPRO;D0 : entropy production rate by indirect (turbu-

lent) dissipation,

(3) _SPRO;C : entropy production rate by heat conduction

with mean temperature gradients,

(4) _SPRO;C0 : entropy production rate by heat transfer with

fluctuating temperature gradients.

Other studies on local entropy production in turbu-

lent flows often are incomplete, for example neglecting
_SPRO;C0 , see [16].

As a consequence of the time averaging process new

unknowns appear in the equations for the time mean

quantities (closure problem). As far as entropy produc-

tion is concerned they are _SPRO;D0 and _SPRO;C0 in Eq. (5).

Note that Eq. (5) as a whole will not be solved but rather

serves to identify all entropy production terms of the

problem. Therefore turbulence modelling is needed only

for these terms and will be provided in the following

section.
3. Model equations for the local entropy production

After the four different entropy sources could be

identified in the balance equation for the entropy we
now want to model the two of them that are still un-

closed ( _SPRO;D0 ; _SPRO;C0 ). For that purpose information

already available in a k–e turbulence closure of the

whole system of equations should be used as far as

possible.

3.1. Entropy production by indirect (turbulent) dissipa-

tion

The entropy source group _SPRO;D0 is closely related to

the so-called turbulent dissipation rate TU which appears

in the k-equation of the k–e model. It is

TU ¼ T � _SPRO;D0 ð6Þ

so that the k–e model might provide the necessary

information to determine _SPRO;D0 .

This model is a two-equation turbulence model based

on the equations for the mechanical energy, k, of the

velocity fluctuations and a corresponding equation for

the dissipation of k, called e-equation. In order to derive

an approximation for the turbulent dissipation rate TU
we take a closer look at the transport equation for the

mechanical energy of the velocity fluctuations (k-equa-
tion, with groups of terms abbreviated as TPV 1, TPV 2, TTD1,
TPRO, TVD, TU, see [18] for details):

.
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In Eq. (7) TPV 1 and TPV 2 are pressure/velocity correla-

tions, TTD1 is the turbulent diffusion, TPRO the production

of turbulent kinetic energy, TVD the viscous diffusion and

TU the turbulent dissipation. The dissipation rate e which
is used in all standard k–e models, however, is not equal

to the turbulent dissipation rate TU=. as one might

expect. Instead, some terms of the group TVD in the

k-equation are combined with TU to a quantity

e ¼ ðTU � TVD þ lDkÞ=. ð8Þ

which then appears in the k-equation. Here D is the

Laplace operator.

The benefit is that now the two terms (TVD � TU) in
the k-equation of form (7) can be replaced by (lDk � .e),
a combination of terms that needs no explicit modelling

since it is given in terms of k and e already. This pro-

cedure is standard in all versions of the k–e model. It

should be kept in mind, however, that .e is not the exact
expression for the turbulent dissipation (which is TU),
and therefore in [18], for example, is named pseudo-

dissipation. The difference between .e and TU, however,
is asymptotically small, disappearing for Re ! 1, see

[19]. Furthermore, neither k nor e can be determined

exactly from the k- and e-equations since they contain

terms that again need modelling to yield a closed system

of equations. Thus what finally has to be solved are
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k- and e-model-equations including a set of (empirical)

coefficients.

To summarise: the approximations we introduced in

connection with the turbulent dissipation term TU are:

(1) Since TU cannot be determined directly we replace it

by .e according to Eq. (8). Thus we assume that

lDk � TVD is small compared to TU.
(2) Since e cannot be determined exactly we replace the

exact e-equation by the e-model-equation of the k–e
model.

Our model equation for the source term _SPRO;D0

therefore is

_SPRO;D0 ¼ .e

T
ð9Þ

where e comes from the model-equation of the k–e
model.

3.2. Entropy production by fluctuating temperatures

If the entropy source _SPRO;C0 should be determined in

a way analogous to how we determined _SPRO;D0 in Eq. (9),

the turbulence model of the problem would have to be a

four equation model for k, e, kH and eH.
Here kH is the variance of the temperature fluctua-

tions, kH ¼ T 02=2 and eH is its dissipation. Such models

exist, see for example [20], but they are not incorporated

in standard CFD-codes. Nevertheless it is worthwhile to

have a closer look at the kH equation. It reads (see [18])
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Here THVD is a group of viscous diffusion terms, THTD is

turbulent diffusion, THPRO production of kH and .eH its

dissipation. The term eH in detail reads

eH ¼ a
oT 0
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with the thermal diffusivity a. It is closely related to the

entropy production _SPRO;c0 by

eH ¼ T
2 _SPRO;C0

.cp
ð12Þ

Since eH is not determined with a two equation kH–eH
model, we alternatively find it from the following con-

siderations:

Except for regions very close to and very far from a

wall, i.e. in the logarithmic region, there often is an

equilibrium situation in which production and dissipa-

tion of kH equal each other in magnitude, i.e. .eH ¼
THPRO, see Eq. (10). Here THPRO is
THPRO ¼ .

�
� u0T 0 � oT

ox
� v0T 0 � oT

oy
� w0T 0 � oT

oz

�
ð13Þ

If this term can be modelled we can relate it to eH and

thus determine _SPRO;C0 .

Modelling of the terms u0iT 0 in Eq. (13) now is based

on the assumption of a constant turbulent Prandtl

number Prt ¼ mt=at and a Boussinesque-like approach

�u0iT 0 ¼ atoT=oxi for the turbulent heat flux so that with

mt ¼ Clk2=e we get
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Eq. (14) in (13) with .eH ¼ THPRO gives
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To summarise, the approximation we introduced in

connection with the turbulent dissipation term eH are:

(1) Local equilibrium, i.e. .eH ¼ THPRO.

(2) A Boussinesque approach for u0iT 0 and a constant

turbulent Prandtl number.

Our model equation for the source term _SPRO;c0
therefore is

_SPRO;C0 ¼ at
a

k

T
2
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oy
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þ oT
oz
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#
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Eq. (16) shows that the turbulent entropy production by

heat conduction, _SPRO;C0 , is closely linked to the direct

entropy production by heat conduction. The only dif-

ference between these two terms is a factor at=a, which
in regions far away from the wall can adopt values in the

order of 100 or above.

An alternative approach, suggested by one of the

referees of this paper, could be to link eH to the dissi-

pation rate e via eH ¼ e kH=k. Then, however, an ex-

tended turbulence model is needed, including a transport

equation for kH.

4. A test case: local entropy production in a turbulent

heated channel

So far, we have shown how all four sources of en-

tropy production in turbulent flows can be calculated in

a post-process. The information available in a turbulent

heat transfer calculation with k–e turbulence modelling

is sufficient for an a posteriori entropy analysis. In this

section some results and comparison with direct

numerical simulation (DNS) are presented for a turbu-

lent heated channel flow (our test case). The Reynolds

number based on bulk velocity and channel width is

Re ¼ 13981. DNS results are available for Prandtl
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numbers Pr ¼ 0:71 and Pr ¼ 5, see [21]. In our calcula-

tions we use the standard k–e model with wall functions

and the same boundary conditions as in [21].

The direct entropy production rates for both, the

DNS and the k–e model calculations, are those in the

RANS-equation for entropy, i.e. terms _SPRO;D and _SPRO;C
in Eq. (5). The turbulent entropy production rates
_SPRO;D0 , _SPRO;C0 for the direct numerical simulations are

calculated via Eqs. (9) and (12). In Fig. 1 the results for

Pr ¼ 0:71 are presented. The entropy production rates

are non-dimensionalised by u2sk=ðmaT 2
w=T

2
s Þ. It turns out

that for all Prandtl numbers for which results are

available the entropy production rates calculated by

the k–e model equations show good agreement with the

DNS calculations provided yþ > 50, i.e. excluding the

near wall region. All entropy production rates have peak

values near the wall and especially for the production

rates from mean gradients, i.e. _SPRO;D and _SPRO;C , the

model equation results are far off very close to the wall.

This is due to the extremely steep gradients of mean

velocity and temperature in the immediate vicinity of the

wall. In the standard k–e model they are accounted for

by special wall functions. They are analytical expressions

for the solutions in this wall nearest part of the flow field

and exploit the universal nature of near wall turbulent

physics. Thus, there is no need for an extremely fine grid
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Fig. 1. Entropy production rates in turbulent heated channel flow

Pr ¼ 0:71.
that could resolve these steep gradients. Instead, the first

finite volume of the numerical grid is rather large with

the analytical solution incorporated.

However, such wall functions have not yet been

established for the entropy productions terms, so that

errors in these terms are extremely high in the wall

nearest volume which is far too big for a resolution of

extreme gradients. This is illustrated in Fig. 2 where the

wall nearest finite volume extends to yþ ¼ 27. The DNS

entropy production rate by direct dissipation (hatched

area) by far exceeds that of the k–e model equations

(shaded area). Obviously without extra considerations in

the wall adjacent volume entropy production rate cal-

culations by the model equations result in inacceptable

errors. And: most of the entropy is generated in the near

wall region!

This clearly defines the next step: wall functions are

needed for all four entropy production terms.
5. Wall functions for entropy production in turbulent shear

flows

In order to obtain more reasonable values for the

entropy production rates in the wall adjacent discrete
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from DNS results and k � e model equations, Re ¼ 13981,
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Fig. 2. Entropy production rates by direct dissipation of kinetic

energy in the near wall region.
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volumes in k–e model calculations, wall function have to

be implemented. These wall-functions should be ana-

lytical over the control volume so that a volume inte-

grated value for the entropy production rate can be

determined.

Wall-functions for the entropy production rates

should be consistent with the asymptotic expansion of

the velocity and temperature profiles for Re ! 1. Based

on these asymptotic expansions entropy production

rates for yþ ! 0 and yþ ! 1 can be found. Here, yþ is

the turbulent wall coordinate yus=m with us ¼
ffiffiffiffiffiffiffiffiffiffi
sw=.

p
as

skin friction velocity. With these asymptotes for yþ ! 0

and yþ ! 1 the production rates in the whole yþ-range
can be found approximately by a procedure proposed by

Churchill and Usagi, see [22], provided one additional

value for finite yþ is known. This, however, should be a

particular number for Re ! 1 which cannot be ex-

tracted from DNS data, for example.

As an alternative approach we combine asymptotic

and DNS considerations. We ‘‘construct’’ wall functions

that are asymptotically correct for yþ ! 0 and corre-

spond to DNS results for finite values of yþ. Implicitly

we thus assume that the universal nature of wall adja-

cent functions that is known to exist for Re ! 1 is

sufficiently developed for those Reynolds numbers al-

ready that can be reached by DNS calculations.
_Sþ
PRO;Dmp
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5.1. Entropy production by direct dissipation

The dimensionless form of the entropy production by

direct dissipation in the near wall region neglecting wall-
parallel velocity gradients, (o . . . =ox; o . . . =oz), is (see Eq.
(5))

_Sþ
PRO;D

¼ _SPRO;D �
ma Tw

Ts

� �2
u2sk

¼
Ecs Tw

Ts

1þ Ts
Tw
Hþ

duþ

dyþ

� �2

ð17Þ

DNS results suggest a _Sþ
PRO;D

-function of the general

form

_Sþ
PRO;D

¼ As exp
h
� bsðyþ � asÞ2

i
ð18Þ

with three constants (As; bs; as) left for a specific curve fit

and asymptotic restraints, respectively.

From Eq. (17) we know

_Sþ
PRO;D

ðyþ ¼ 0Þ ¼ Ecs
Tw
Ts

ð19Þ

d _Sþ
PRO;D

dyþ

�����
yþ¼0

¼ �EcsPr ð20Þ

since duþ=dyþ ¼ 1 and dHþ=dyþ ¼ Pr at yþ ¼ 0. These

two considerations as well as a third constraint

(assumption about the location of the inflection point)

gives

as ¼
�9PrTsyþ2

ln s

8Tw � 12yþln sPrTs þ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2
w � 3yþln sPrTwTs

p ð21Þ

bs ¼
8Tw � 12yþln sPrTs þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2
w � 3yþln sPrTwTs

p
18Twyþ2

ln s

ð22Þ

As ¼ Ecs
Tw
Ts

exp½bsa2s � ð23Þ

with yþln s ¼ 11:6 being the edge of the viscous sublayer.

The semi-empirical wall-function for the entropy pro-

duction by direct dissipation, (18), for two different

Prandtl numbers is shown in Fig. 3 together with the

DNS results from [21]. Including the asymptotic

behaviour for yþ ! 0 it correctly accounts for the

change in the wall-gradient for higher Prandtl numbers.

This wall-function can be integrated so that the

overall value of the entropy production by direct dissi-

pation for the wall adjacent volume is
Here the center of the discrete volume has a non-

dimensional wall-distance yþmp.
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Fig. 3. Entropy production rates by direct dissipation in turbulent heated channel flow from DNS results and Eq. (18), Ecs ¼ 0:01,

Ts/Tw ¼ 0:01, Pr ¼ 0:71 (Res ¼ 395) and Pr ¼ 5 (Res ¼ 180).
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5.2. Entropy production by indirect (turbulent) dissipation

The dimensionless form of _SPRO;D0 in the near wall

region is

_Sþ
PRO;D0 ¼ _SPRO;D0 �

ma Tw
Ts

� �2
u2sk

¼
Ecs Tw

Ts

1þ Ts
Tw
Hþ eþ ð25Þ

where eþ ¼ .el=.2u4s for small and large values of yþ is
eþðyþÞ ¼ 0:15 for yþ ! 0

1=ðkyþÞ for yþ ! 1

�
ð26Þ
_Sþ
PRO;D0mp ¼

1

2yþmp

0:15Ecs
Tw
Ts

yþln s



þ Ecs

T 2
w

T 2
s

1

K
� log 1

�

þ Ts
Tw

ðlogð2yþmpÞ þ Cþ
s Þ � log 1

�
þ Ts
Tw

ðlogðyþln sÞ þ Cþ
s Þ
����

ð28Þ
Details of this asymptotic behaviour again can be found

in [18]. The constant 0.15, however, is not a universal

near-wall value but one that is close to the wall-value of

eþ for different flows over a wide range of Reynolds

numbers.

Together with the asymptotic representation of

HþðyþÞ we thus get a function that combines the two

asymptotes by just patching them at the selected yþ-
position yþ ¼ 11:6:

_Sþ
PRO;D0 ¼

0:15Ecs
Tw
Ts

for yþ < 11:6

Ecs
Tw
Ts

Kyþ 1þ Ts
Tw

�
1

jH
log
�
yþ
	
þCþ

H

�
 � for yþP11:6

8>>>>>><
>>>>>>:

ð27Þ
We did not smooth the peak at this position since there

are good arguments that for higher Reynolds numbers a

relative maximum occurs in the vicinity of our patching

point.

Fig. 4 shows how Eq. (27) compares to DNS data for

two different Prandtl numbers. Note that there is a

tendency for a local maximum around yþ ¼ 11:6 even

for the low Reynolds numbers of this case.

This wall function can be integrated so that the

overall value of the entropy production by turbulent

dissipation for the wall nearest volume is (yþmp: volume

center, yþln s ¼ 11:6):
5.3. Entropy production by mean temperature gradients

_SPRO;C can be handled just like _SPRO;D in Section 5.1.

Neglecting wall-parallel temperature gradients the

dimensionless form is assumed to be

_Sþ
PRO;C

¼ _SPRO;C
ma Tw

Ts

� �2
u2sk

¼
dHþ

dyþ

� �2
Pr 1þ Ts

Tw
Hþ

� �2
¼ AH exp

h
� bHðyþ � aHÞ2

i
ð29Þ

With _SPRO;Cðyþ ¼ 0Þ ¼ Pr and the first derivative with

respect to yþ at the wall d _SPRO;C=dy
þðyþ ¼ 0Þ ¼

�2Pr2Ts=Tw, together with an assumption about the

inflection point we get
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Fig. 4. Entropy production rates by turbulent dissipation in turbulent heated channel flow from DNS results and Eq. (27), Ecs ¼ 0:01,

Ts/Tw ¼ 0:01, Pr ¼ 0:71 (Res ¼ 395) and Pr ¼ 5 (Res ¼ 180).
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aH ¼ �9PrTsyþ2
lnH

4Tw � 12yþlnHPrTs þ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2
w � 6yþlnHPrTwTs

p ð30Þ

bH ¼ 4Tw � 12yþlnHPrTs þ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2
w � 6yþlnHPrTwTs

p
9Twyþ2

lnH

ð31Þ

AH ¼ Pr exp½bHa2H� ð32Þ

with yþlnH being the edge of the temperature sublayer, i.e

yþlnH ¼ 12:1 for Pr ¼ 0:71 and yþlnH ¼ 7:3 for Pr ¼ 5
_Sþ
PRO;C0mp ¼

1

2yþmp

0:15PryþlnH

"
þ 1

Ts
Tw
þ logðyþlnHÞ þ Cþ

H

� 1
Ts
Tw
þ logð2yþmpÞ þ Cþ

H

#
ð36Þ
(these values are determined from the asymptotes of

HþðyþÞ, see [18]). Fig. 5 shows _SPRO;C for two different

Prandtl numbers together with DNS data. Again they

compare very well. Integration over the wall nearest

volume gives:
_Sþ
PRO;Cmp

¼ 1

2yþmp

1

2
AH

ffiffiffiffiffiffi
p
bH

r
� erf

ffiffiffiffiffiffi
bH

p
f2yþmp

�h�
� aHg

�
� erf

�
�

ffiffiffiffiffiffi
bH

p
aH
�i�

ð33Þ
5.4. Entropy production by fluctuating temperature gra-

dients

_Sþ
PRO;C0 can be handled just like _Sþ

PRO;D0 in Section 5.2.

Its dimensionless form is

_Sþ
PRO;D0 ¼ _SPRO;D0 �

ma Tw
Ts

� �2
u2sk

¼ eþH

1þ Ts
Tw
Hþ

� �2 ð34Þ

where eþH ¼ eH � m=ðT 2
s u

2
sÞ for small and large values of

yþ is (details in [18]):
eþHðyþÞ ¼
0:15Pr for yþ ! 0

1=ðKHyþÞ for yþ ! 1

�
ð35Þ

With a patching procedure analogous to Eq. (27) we get

a distribution for _Sþ
PRO;C0 , which in Fig. 6 is compared to

DNS data at Pr ¼ 0:71 and Pr ¼ 5. For higher Prandtl

numbers deviations increase though the wall values are

remarkably close together.

For the wall nearest volume integration gives (yþmp:

volume center, yþlnH ¼ 12:1 for Pr ¼ 0:71):
5.5. Summary

At this stage all four wall functions are at hand and

entropy production in the wall nearest finite volume has

been determined as _Sþ
PRO;Dmp

in Eq. (24), _Sþ
PRO;D0mp in Eq.
(28), _Sþ
PRO;Cmp

in Eq. (33) and _Sþ
PROC0mp in Eq. (36).

Implementation in a CFD code is straight forward,

so that our model of entropy production can be tested

for a ‘‘real’’ problem.
6. An Example: entropy production in a heated pipe-flow

Bejan [1] studied the following optimisation problem

on the background of a general second law analysis, but

without detailed calculation of the entropy production.
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Instead, for this specific problem he could estimate the

overall entropy production from empirical correlations

for the friction factor and the Nusselt number. In the

example water with a mass flux of 1 kg/s enters a pipe at

300 K and is heated by a constant wall heat flux

qw ¼ 105 W/m2 to 310 K at the exit. The turbulent flow

is assumed to be hydrodynamically and thermally fully

developed. The only adjustable parameter is the pipe

diameter. A small diameter corresponds to a long pipe

and small temperature differences within a cross-section

with small entropy productions by heat transfer but

large entropy productions by dissipation. For a large

pipe-diameter, however, the pipe is short with large en-

tropy productions by heat transfer but small entropy

productions by dissipation. There should be a diameter

optimum at which the total entropy production reaches

a minimum.

To solve this problem we integrated the specific en-

tropy production rates over the whole pipe volume for

different pipe-diameters, i.e. for different Reynolds

numbers, Re ¼ ðumDÞ=m ¼ ð4 _mÞ=ðplDÞ / 1=D. For each
case (Re fixed) we thus calculated the total entropy

production rate, _SPRO, shown in Fig. 7. The minimum of
the entropy production rate as well as the Reynolds

number for which it occurs is almost the same for the

empirical solution and the presented model equations.
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For small Reynolds-numbers the assumptions under-

lying the empirical correlations approach by Bejan [1]

become invalid and larger deviations occur.

At first glance there might emerge the wrong con-

clusion from the results of this example: Why should one

calculate entropy production over the whole flow field

when the same result can be achieved by simply

exploiting momentum and heat transfer coefficients?

Our answer is: the Bejan-approach is good for certain

simple cases where cross-sectional distributions of the

field quantities are such that global momentum and heat

transfer coefficients exist, but not for general complex

cases. Then only a detailed information about the field

quantity ‘‘entropy production’’ can lead to the total

production which may serve as a criterion to find out

which of several versions of an apparatus is the best in

terms of entropy production.
7. Conclusions/summary

A systematic procedure has been presented to derive

formulations for the local entropy production rates in

turbulent flows with heat-transfer. The procedure is

based on the Reynolds-averaged transport equation for

entropy. Four sources of entropy production in turbu-

lent flows with heat transfer can be identified: Entropy

production by direct dissipation, by turbulent dissipa-

tion, by heat transfer with mean temperature gradients

and by heat transfer with gradients of the fluctuating

temperature. For each entropy production rate a model

equation in combination with the standard k–e model is

derived. It turns out, that peak values of entropy pro-

duction occur very close to a wall. We therefore intro-

duced semi-empirical wall-functions for the entropy

production terms on the basis of asymptotic consider-

ations. The overall model has been ‘‘tuned’’ by results

of direct numerical simulations. Its ability to predict

the minimum entropy production in a problem of sec-

ond-law analysis has been shown in an example. The

presented model can easyly be implemented in the post-

process of a k–e model CFD analysis and can serve as a

powerful tool to calculate efficiency parameters in tur-

bulent flows with heat transfer.
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